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Abstract

A reference frame formulation for steady state thermo!elasto!plastic processes is presented[ The dis!
placement and history dependent response _elds appear as the primary variables in this mixed formulation[
Unlike displacement based Lagrangian formulations\ our formulation does not require a transient analysis
to simulate a steady state process and yields results that are free of numerical oscillations and which require
considerably less computational e}ort[ And unlike velocity based Eulerian methods\ our formulation does
not require free surface corrections or streamline integration algorithms[ A laser surface treatment process
is simulated and our results are in agreement with those obtained from a computationally intensive transient
Lagrangian analysis[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Many manufacturing processes such as laser surface treatment\ metal forming\ continuous
casting\ etc[\ are steady state in nature[ Materials used in these processes exhibit history dependent
response e[g[ plasticity[ Hence\ the analyst must consider the deformation history which each
material particle experiences\ even though the process is steady state[ This material history is not
an issue in ~uids problems e[g[ the ~ow of a Newtonian ~uid through a pipe[

Traditionally steady state processes\ with history dependent material behavior\ have been ana!
lyzed using Lagrangian kinematic descriptions "Lee et al[\ 0865 ^ Appleby et al[\ 0873 ^ Carroll and
Strenkowski\ 0877#\ in which the displacement is the primary variable[ This method requires a
transient analysis to determine the evolution of the history dependent variables[ The transient
analysis terminates when {steady!state| behavior is observed[ However\ oscillations appear in the
computed {steady!state| Lagrangian _elds due to the interaction between the time and space
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discretizations "Appleby et al[\ 0873#[ Moreover\ these methods are computationally ine.cient
since they require meshes and transient analysis[

Local mesh re_nement is often required to accurately compute the solution and to eliminate the
ine.ciencies due to uniform mesh re_nement "IJNME\ 0880 ^ CMAME\ 0881#[ The regions that
require re_nement are often known a priori[ Consequently in the steady analysis\ the appropriate
re_nement can be implemented[ However in transient analyses considered here\ the re_ned regions
evolve and therefore adaptive meshing schemes are required "IJNME\ 0880 ^ CMAME\ 0881 ^
Palle\ 0882#[ This requirement further taxes the computational e}ort associated with Lagrangian
steady state analyses[

Steady state processes have also been modeled using Eulerian kinematic descriptions "Zien!
kiewicz and Godbole\ 0863 ^ Zienkiewicz et al[\ 0867 ^ Strenkowski and Moon\ 0889 ^ Ruan\ 0885#[
Most of these formulations\ which use velocity as the primary _eld\ assume viscoplastic material
behavior and neglect elastic deformation "Zienkiewicz and Godbole\ 0863 ^ Zienkiewicz et al[\
0867#[ If necessary\ elastic strain e}ects can be included by an {elastic reanalysis| "Zienkiewicz et
al[\ 0867# or by the {initial stress!rate method| "Dawson and Thompson\ 0867#[

In Eulerian formulations for steady state processes\ the history dependent variables can be
evaluated by integrating the evolution equations along their path!lines "Viriyauthakorn and
Caswell\ 0879 ^ Dawson\ 0867#[ This integration requires that the path!lines be known a priori and
hence\ iterations are performed in which the momentum balance equations are solved to determine
the path!lines and the evolution equations are integrated to determine the material response[ In
contrast to this iterative technique which requires two distinct analyses\ the material response
evolution equations can be solved simultaneously with the momentum balance equation via the
Galerkin method "Thompson et al[\ 0872#[ The strengths and limitations of these two models are
discussed by Agrawal and Dawson "Agrawal and Dawson\ 0874#[ They note that\ while both
methods yield accurate results\ the numerical implementation of the latter method is simpler than
that of the path!line integration method[ However\ results obtained from the latter method exhibit
oscillations "Agrawal and Dawson\ 0874# due to the hyperbolic nature of the evolution equations[
Recently\ these oscillations have been resolved using the streamline upwind PetrovÐGalerkin
method "Ruan\ 0885#[

Another issue in velocity based Eulerian formulations is the treatment of free surfaces[ Since the
governing equations are expressed on the deformed con_guration\ the surfaces on the control
volume that are loaded with tractions must be adjusted to coincide with the surface path!lines[
This adjustment is accomplished by either iterative updating or successive recalculation "Dawson
and Thompson\ 0867# ^ both are time consuming tasks[

Arbitrary LagrangianÐEulerian "ALE# kinematic descriptions\ which combine both the Eulerian
and Lagrangian descriptions\ have also been used to solve history!dependent problems "Heutink
et al[\ 0889 ^ Rakotomalala and Joyot\ 0882 ^ Hu and Liu\ 0882 ^ Liu et al[ 0875 ^ Liu et al[ 0877 ^
Haber\ 0873 ^ Lee and Haber\ 0882 ^ Ghosh and Kikuchi\ 0880 ^ Ghosh and Suresh\ 0885#[ In such
descriptions\ the _nite elements need not adhere to a _xed material volume nor to a _xed control
volume[ ALE formulations are suitable for problems where the region of interest moves in a _xed
domain\ such as in crack propagation "Lee and Haber\ 0882#[ The formulation requires a transient
analysis for history!dependent problems[ Both velocity based "Rakotomalala and Joyot\ 0882 ^ Hu
and Liu\ 0882 ^ Liu et al[\ 0875 ^ Liu et al[\ 0877# and displacement based "Haber 0873 ^ Lee and
Haber\ 0882 ^ Ghosh and Kikuchi\ 0880 ^ Ghosh and Suresh\ 0885# ALE formulations have been
reported[
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In this work\ we use a Reference Frame kinematic description to take advantage of the steady!
state nature of some manufacturing processes[ We use displacement as the primary _eld\ instead
of velocity\ thereby obviating the need for free surface corrections and streamline integrations[
History dependent response _elds "the plastic strain and cumulative plastic strain# also appear as
primary variables\ in what is now a mixed formulation[ The hyperbolic material evolution equations
are solved via the streamline upwind PetrovÐGalerkin method "Brooks and Hughes\ 0871 ^ Ruan\
0885# to eliminate the oscillations that are reported in prior numerical studies[ The solution of the
steady state problem via the Eulerian formulation requires the appropriate speci_cation of bound!
ary conditions over the control volume|s inlet and outlet surfaces[ We prescribe traction and
surface ~ux boundary conditions at these surfaces to be consistent with the steady!state response
_elds[

To exemplify the analysis\ we simulate a laser surface treatment process[ A simpli_ed two!
dimensional plane strain model is used to represent the geometry and the J1 ~ow theory is used to
model the material response[ Small deformations are assumed in this steady state analysis in which
the laser passes over the work piece at a constant velocity thereby inducing the thermal load which
causes the deformation[ The results of our steady!state analysis are in agreement with those
obtained from a transient ABAQUS "ABAQUS 4[5\ 0885# analysis[ The advantages of the Ref!
erence Frame method vs the Lagrangian method are apparent as the computational e}ort is
reduced by an order of magnitude[

1[ Reference frame kinematic model

The body is in con_guration V at time t � 9 and its material particles are identi_ed in V via the
position vector X\ de_ned with respect to the material coordinate frame "9 ] e0\ e1\ e2#[ Here\
"e0\ e1\ e2# comprises an orthonormal basis[ The motion of the body is represented by the smooth
mapping f such that at any given time t $ I\ the location x "with respect to the material coordinate
frame# of a material point which occupied the position X at time t � 9 in V is given by

x � f"X\ t# "0#

Here I � ð9\ T Ł is the time interval in which the problem is de_ned and T is the terminal time in
the analysis[ The mappings f and the position vector X and x are illustrated in Fig[ 0[ We emphasize
that the material frames used to de_ne X and x are one and the same[

In most steady state processes\ the region over which the deformation evolves is primarily
restricted to the vicinity of the loading[ We represent this region by V9 in the undeformed
con_guration ^ V9 corresponds to the con_guration Vt in the deformed con_guration "see Fig[ 0#\
i[e[ Vt � f"V9\ t#[ One may think of V9 as a control volume\ however here it is not associated with
the deformed con_guration "as in a Eulerian analysis#\ rather it is associated with the undeformed
con_guration "as in a Lagrangian analysis#[

We now introduce a reference con_guration Vr[ Material particles are identi_ed in Vr via the
position vector r\ de_ned with respect to its distinct reference coordinate frame "9
 ] e¼0\ e¼1\ e¼2#\ where
"e¼0\ e¼1\ e¼2# comprises an orthonormal basis[ At any given time t\ Vr is mapped into the undeformed
con_guration V9 by the map g "see Fig[ 0#[ Note that Vr only maps to the control volume
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Fig[ 0[ Kinematic model[

portion of the undeformed body and this portion changes in time to follow the loading zone i[e[\
V9 � g"Vr\ t#[ The position vectors r in the reference con_guration and X in the undeformed
con_guration are related by

X � g"r\ t# "1#

The Jacobian associated with this mapping is de_ned as

J"r\ t# �
1g

1r
"r\ t# "2#

and the determinant of the Jacobian is denoted by J\ i[e[ J"r\ t# � det"J"r\ t##[
On the reference con_guration\ we de_ne the inlet boundary "1Vr#f − as the subsurface of 1Vr

over which material ~ows into the domain i[e[ g� = n ³ 9 ðor J−0g� = nr ³ 9 by Nanson|s formula
"Ogden\ 0873#Ł[ The out~ow boundary "1Vr#f ¦ W 1Vr is similarly de_ned as the subsurface over
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Fig[ 1[ De_nition of composite functions[

which the material exits the domain i[e[ g� = n × 9 "or J−0g� = nr × 9#[ Here n and nr are the normals
to the surface 1V and 1Vr\ respectively[

Fields de_ned on the undeformed con_guration V9 "i[e[ material _elds# are denoted as " #"X\ t#\
and for each of these _elds we de_ne the corresponding reference _eld "
#"r\ t# on Vr such that
their values are equal at corresponding points "see Fig[ 1#\ i[e[

"
g

#"r\ t# �" #"g"r\ t#\ t# "3#

Note that at di}erent times\ e[g[ t and t?\ the material point associated with r changes\ e[g[ X � g"r\ t#
and X? � g"r\ t?#\ and hence the reference _elds when evaluated at "r\ t# and "r\ t?# will generally not
be equal[ If the function values for the pairs "r\ t# and "r\ t?# agree for all r in Vr and for all t in I\ then
the process is deemed steady and we have e[g[ u¼ "r\ t# � u¼ "r\ t?# ^ and consequently u"X\ t# � u"X?\ t?#[

We adopt the following notation for gradient operators for _elds de_ned over the undeformed
and reference con_gurations[

9x" #"X\ t# �
1" #
1X

"X\ t# ^ 9r"
g

#"r\ t# �
1"

g

#
1r

"r\ t# "4#

Similarly\ we de_ne partial derivatives with respect to time for _elds de_ned over the undeformed
and reference con_gurations
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1" #
1t

"X\ t# �"=#"X\ t# ^
1"

g

#

1t
"r\ t# �"

g�
#"r\ t# "5#

Note that "=#"X\ t# is the usual material time derivative[

2[ Lagrangian formulation for thermo!elasto!plasticity

In this section\ we present the initial boundary value problem "IBVP# associated with thermo!
elasto!plastic quasi!static bodies[ We restrict our discussion to those problems in which the tem!
perature solution can be solved prior to the mechanical problem i[e[\ weak coupling is assumed[
We also neglect inertial e}ects in the momentum balance equation[ Finally\ we assume that the
displacement gradients are small and use the linearized governing equations[ As such\ all equations
and _elds are de_ned on the undeformed material con_guration V[ The conventional IBVP for
thermal and mechanical analyses are presented in Sections 2[0 and 2[1\ respectively[

2[0[ Thermal analysis

The body with initial temperature _eld u9\ density r\ internal energy e\ and conductivity tensor
K\ is subjected to a heat source r within V and to prescribed temperature uÞ and surface ~ux q¹
boundary conditions on the complementary subsurfaces 1Vu and 1Vq of 1V\ respectively[ To solve
the thermal IBVP for the temperature u\ we must satisfy the following governing equations\
boundary conditions and initial conditions

−divx q"X\ t#¦r"X\ t# � r
de
dt

"X\ t# in V×I

q"X\ t# � −K"X\ t#
1u

1X
"X\ t# on V×I

q"X\ t# = n"X\ t# � q¹ "X\ t# on 1Vq×I

u"X\ t# � u¹ "X\ t# on 1Vu×I

u"X\ t# � u9"X# on V "6#

where q denotes the heat ~ux vector\ divx denotes the divergence with respect to the position x\
and d:dt denotes the material time derivative[

2[1[ Mechanical analysis

The strain E is obtained from the displacement _eld u using the in_nitesimal strainÐdisplacement
relation[

E"X\ t# �
0
1 $

1u

1X
"X\ t#¦0

1u

1X
"X\ t#1

T

% in V×I "7#
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Additionally\ E is assumed to be the sum of elastic\ plastic and thermal strains denoted as Ee\ Ep

and Eu\ respectively\ so that we also have

E"X\ t# � Ee"X\ t#¦Ep"X\ t#¦Eu"X\ t# in V×I "8#

The thermal strain Eu results from thermal expansion\ i[e[

Eu"X\ t# �"u"X\ t#−ur#M"X# in V×I "09#

where ur is a uniform reference temperature and M is a constant and diagonal tensor _eld which
dictates the thermal expansion[ The plastic strain Ep results from the permanent plastic deformation
due to the movement of dislocations along crystallographic planes "Lubliner\ 0889#[

Following the usual assumptions that neither the thermal nor the plastic strains contribute to
the Cauchy stress S "Lubliner\ 0889#\ we have

S"X\ t# � C"X#ðEe"X\ t#Ł � C"X#ðE"X\ t#−Ep"X\ t#−Eu"X\ t#Ł in V×I "00#

where C is the constant elasticity tensor[
For simplicity\ we incorporate the associative J1 plasticity theory "Lubliner\ 0889#[ Accordingly\

the von Mises pressure insensitive yield criterion f\ the evolutions of the plastic strain Ep and the
cumulative plastic strain o are given by

f"Sd\ o# � >Sd>−z
1
2
k"o# ¾ 9 on V×I

Eþp"X\ t# � a"X\ t#ðN"X\ t# & N"X\ t#ŁEþ"X\ t# in V×I

o¾"X\ t# � z
1
2
>Eþp"X\ t#> in V×I "01#

where Sd � S−0
2
"S = I#I is the deviatoric stress tensor\ k is the hardening rule obtained from a

uniaxial tension test\ N � Sd:>Sd> is the normalized gradient of the yield function with respect to
Sd\

a � 8
9 if f¾ 9 or f¾¾ 9

0

0¦
k?
2G

otherwise "02#

and G is the shear modulus[
The body is subjected to a body force b and thermal loads within V and to displacement u¹ and

traction t¹ boundary conditions prescribed on the complementary subsurfaces 1Vu and 1Vt of 1V\
respectively[ To solve the IBVP\ we must satisfy the previous equations along with the following
equilibrium equation\ boundary conditions and initial conditions "on the plastic strain E9

p \ and
cumulative plastic strain o9#

divx S"X\ t#¦b"X\ t# � 9 in V×I

u"X\ t# � u¹ "X\ t# on 1Vu×I

S"X\ t#n"X\ t# � t¹"X\ t# on 1Vt×I
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Ep"X\ 9# � E9
p "X# on V

o"X\ 9# � o9"X# on V "03#

These equations hold for any subdomain of V\ in particular the subregion Vt\ encompassing the
loading zone as illustrated in Fig[ 0[ We note that the evolution of the state variables\ Ep and o\ is
dependent on the loading path\ i[e[ they are history dependent[

We emphasize that we use displacements as the primary variable and that the IBVP is de_ned
over the known undeformed con_guration[ This formulation contrasts velocity based formulations
that de_ne the IBVP over the deformed con_guration\ which is not known a priori for the type of
problems we consider[

3[ Reference Frame formulation for steady state processes

The kinematic description and the transformation equations of Section 1 are used to express the
IBVP on the Reference Frame[ We then specialize the previous derivation for steady state processes[
In Section 3[0\ we express the governing equations developed in Section 2 using the Reference
Frame kinematic description[ The theory is specialized for steady state processes in Section 3[1[

3[0[ Transformation to reference con_`uration

The governing equations of Section 2 are now transformed to the reference con_guration[ The
analysis is subsequently performed on the reference con_guration to evaluate the reference _elds[
Equation "3# is then used to evaluate the corresponding _eld quantities on the undeformed
con_guration[

The thermal IBVP transforms as

−divr ðJJ−0q¼Ł¦Jr¼ � Jrðe¼�−9re¼ = J−0g�Ł in Vr×I

q¼ � −K
J−T9ru¼ in Vr×I

u¼ � u¹ =x�g"r\t# on 1Vu
r×I

JJ−0q¼ = nr � J>J−Tn> q¹ =x�g"r\t# on 1Vq
r×I

u¼ � u9 =x�g"r\9# on Vr "04#

where divr denotes the divergence with respect to the reference position r ^ 1Vu � g"1Vu
r \ t# and

similarly 1Vq � g"1Vq
r \ t#[ Note that some of the boundary conditions correspond to the inlet and

outlet surfaces of the loaded body "see Fig[ 0# ^ hence their values are not easily prescribed[ We
discuss this matter further in Section 3[1 where we specialize the theory to steady state processes[

We now use eqns "3#Ð"5# to transform the mechanical IBVP to the reference con_guration[
Equations "7#Ð"01# transform as
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E
 � E
e¦E
p¦E
u

E
u � ðu¼−u9ŁM


S
� C
ðE
eŁ � C
ðE
−E
p−E
uŁ

f"S
d\ o¼# � >S
d>−z
1
2
k"o¼# ¾ 9

E
 � 0
1
"9ruJ−0¦"9ruJ−0#T#

E

�

p−9rE
pJ
−0g� � a"N & N#ðE


�
−9rE
J−0g�Ł

o¼
�−9ro¼J

−0g� � z
1
2
>E

�

p−9rE
pJ
−0g�>

J

G

G

G

G

f

F

G

G

G

G

j

onVr×I "05#

and G is replaced and G
 in eqn "02#[ The equilibrium equation and boundary conditions transform
as

divr ðJS
J−0Ł¦Jb¼ � 9 in Vr×I

u¼ � u¹ =X�g"r\t# on 1Vu
r×I

JS
"r\ t#J−Tnr � J>J−Tnr>t¹=X�g"r\t# on 1Vt
r×I "06#

where 1Vu � g"1Vu
r \ t# and similarly 1Vt � g"1Vt

r\ t#[ Note that\ like the thermal boundary
conditions\ the mechanical boundary conditions may be di.cult to prescribe over the inlet and
outlet surfaces of the loaded body[ We again defer the discussion of this matter until Section 3[1[

The initial conditions of the reference con_guration\ are obtained from the initial conditions on
the image of g"Vr\ 9#\ i[e[\0

E
p"r\ 9# � E9
p "g"r\ 9## on Vr

o¼"r\ 9# � o9"g"r\ 9## on Vr "07#

The presence of the convective terms in the evolution equations of o and Ep ðcf eqns "05#5 and
"05#6Ł\ yields a hyperbolic problem[ Hence\ we must also specify the current values of the history
dependent state variables "E
p and o¼# for all material particles that enter the domain across the inlet
boundary "1Vr#f −\ i[e[ we prescribed the following boundary conditions

E
p"r\ t# � EÞp"r\ t# on "1Vr#f −

o¼"r\ t# � o¹"r\ t# on "1Vr#f −
"08#

These boundary conditions\ like those in eqns "06#1 and "06#2\ may be di.cult to prescribe[

3[1[ Steady state processes

We now specialize the theory developed in the previous section for the two!dimensional steady
state process shown in Fig[ 2[ A semi!in_nite domain V with a uniform initial temperature _eld u9\
zero initial plastic strain "i[e[ E9

p � 9 and o9 � 9# and zero residual stress is subjected to a moving

0 As seen in the next section\ these initial conditions are not required in the steady state analysis[
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Fig[ 2[ Kinematic model for the steady state problem[

load with a constant velocity v[ The material coordinate system is de_ned so that the e0 axis and v

are aligned\ i[e[\ v � ve0\ where v is the magnitude of the velocity and e0Ðe1 plane is the plane over
which the plane strain analysis is performed[ The material domain of interest V9 encompasses and
translates with the load region[ The length of V9 is chosen so that the inlet edge is signi_cantly
ahead of the loading zone and the outlet edge is signi_cantly away of the loading zone so that the
material _elds at the outlet edge are su.ciently uniform in the X0 direction "here Xi � X = ei#[

The reference con_guration\ Vr\ is of the same length "L# and breadth "W# as V9 and is oriented
such that e¼i is mapped into ei\ i[e[

X � g"r\ t# � r¦tv "19#

Trivially then\ J � I and J−0g� � v ^ and the in~ow and out~ow boundaries are identi_ed as

"1Vr#f −
� "r ] r0 � L# ^ "1Vr#f ¦

� "r ] r0 � 9# "10#

where ri � r = e¼i[
Since the reference con_guration translates with the load zone\ the reference _elds do not vary

with time\ i[e[ "
g�# "r\ t# � 9 and hence the reference IBVP becomes a steady!state boundary value

problem "BVP#[ The thermal IBVP now reduces to

−divr q¼¦r¼ � −
1e¼
1r0

v in Vr

q¼ � −K
9ru¼ in Vr "11#
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where ð1"
g

#:1riŁ � 9r"
g

# = e¼i and the temperature _eld\ u¼ is now de_ned on Vr and no longer on Vr×I[
Flux boundary conditions are prescribed on the inlet and outlet surfaces i[e[ "1Vr#f −

and "1Vr#f ¦
[

Since the temperature _eld is assumed to be su.ciently uniform in the e¼0 direction near the inlet
and outlet edges\ a zero surface ~ux is prescribed across these boundaries[ On the remainder of the
boundary\ either ~ux or temperature boundary conditions are prescribed[

u¼ � u¹ on 1Vu
r

q¼ = nr � 9 on ""1Vr#f −
¦"1Vr#f ¦

# W 1Vq
r

q¼ = nr � q¹ on 1Vq
r−""1Vr#f −

¦"1Vr#f ¦
# "12#

The mechanical IBVP is now expressed as

divr S
¦b¼ � 9

S
� C
ðE
−E
p−E
uŁ

E
 � 0
1
"9ru¼¦"9ru¼#T#

1E
p

1r0

� a"N
 & N
#
1E


1r0

−
1o¼
1r0

� X
1
2 B

1E
p

1r0 B

J

G

G

G

G

h

G

G

G

G

j

onVr "13#

where all _elds are solely de_ned on Vr and no longer on Vr×I[ Traction boundary conditions are
prescribed at the inlet and outlet surfaces i[e[ "1Vr#f −

and "1Vr#f ¦
\ to mimic the stress state at these

locations in the undeformed con_guration[ Since "1Vr#f −
is signi_cantly ahead of the loading zone\

and since the unloaded body has zero plastic strain and stress\ we apply the following boundary
conditions at the inlet[

E
p � 9

o¼ � 9

S
n¼ r � 99 on "1Vr#f −
"14#

Over the outlet "1Vr#f ¦
\ we use the facts that the _elds are su.ciently developed\ and that the ~ux

_elds are uniform in the e¼0!direction[ In particular\ the stress _eld is uniform in the e¼0!direction\
hence we are able to prescribe the value of t¹ "see Section 4 for details# across "1Vr#f ¦

S
"r#nr"r# � t¹"g"r\ t#\ t# on"1Vr#f ¦
"15#

Over the remainder of the boundary\ we prescribe either traction or displacement

u¼ "r# � u¹ "g"r\ t#\ t# on 1Vu
r

S
"r#nr"r# � t¹"g"r\ t#\ t# on 1Vt
r−""1Vr#f ¦

¦"1Vr#f −
# "16#

After this reference BVP is solved\ the material _elds are computed through eqn "3#\ e[g[
Ep"g"r\ t#\ t# � E
p"r# at any time t "cf Fig[ 1#[ In our kinematic description for steady state processes\
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the reference and undeformed con_gurations coincide[ Therefore\ one can view the response of
the reference con_guration to be that of the undeformed con_guration associated with it at a given
instant[

4[ Weak formulation

The method of weighted residuals is used to develop a weak formulation for the ther!
momechanical BVP[ The heat ~ux eqn "11#1 and temperature boundary conditions "12#0 are
strongly enforced\ while the energy balance eqn "11#0 and the heat ~ux boundary conditions
"12#1Ð2 are weakly enforced through the residual

Ru"u¼\ u½# � gVr

9ru½ = K
9ru¼ dVr−gVr

u½
1e¼
1r0

v dVr−gVr

u½r¼ dVr−g1Vq
r

u½q¹ dAr "17#

where u½ is a suitable arbitrary weighting function[ We note that\ though the thermal governing
eqn "11#0 is a mixed ellipticÐhyperbolic equation\ the exact solution to the thermal BVP is smooth
and hence the standard Galerkin method produces acceptable results "Johnson\ 0876#[

In the weak formulation for the mechanical problem\ eqns "13#1 and "13#2\ and the displacement
boundary conditions are strongly enforced\ whereas eqns "13#0\ "13#3 and "13#4\ and the traction
boundary conditions are weakly enforced[ The result is mixed formulation\ in which J
 �"u¼\ E
p\ o¼#
is the independent variable\ implicitly de_ned by the following three residuals

Ru"J
\ J	# � gVr

E	 ="C
ðE
−E
p−E
tŁ# dVr−gVr

u½ = b¼ dVr−g1Vt
r

u½ = t¹dAr "18#

REp
"J
\ J	# � gVr

0E	p¦bv
1E	p

1r01 = 0
1E
p

1r0

−a"N
 & N
#
1E


1r01 dVr "29#

Ro"J
\ J	# � gVr
0o½¦bv

1o½
1r01 0

1o¼
1r0

¦X
1
2 B

1E
p

1r0 B1 dVr "20#

where J	 �"u½\ EŁ	p\ o½# is a suitable arbitrary weighting function and E	 � 0
1
"9ru½¦"9ru½#T#[ Since eqn

"13#3 and "13#4 are hyperbolic\ the streamline upwind PetrovÐGalerkin "SUPG# weighting functions
"Brooks and Hughes\ 0871 ^ Johnson\ 0876# are used in REp

and Ro to stabilize the solution[ Here
b represents an arti_cial di}usivity acting only in the ~ow direction\ the v "or e¼0# direction\ and its
value is chosen to minimize the discrepancy between the _nite element and the exact solutions
"Brooks and Hughes\ 0871#[

Proper element choice is critical to the stability and accuracy of mixed methods[ Since the
plastic strain is incompressible\ we use a quadrilateral element with nine nodes to interpolate the
displacement u and four nodes to interpolate the plastic strain Ep and the cumulative plastic strain
o[ Our element choice is motivated by the fact that a quadrilateral element that uses nine nodes for
the velocity interpolation and four nodes for the pressure interpolation satis_es the BabuskaÐ
Brezzi criterion for Stokes| problem "Carey and Oden\ 0872 ^ Zienkiewicz and Taylor\ 0880#[ Our
element seems to behave satisfactorily as the numerical solution is free of spurious oscillations[
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Fig[ 3[ Speci_cation of boundary conditions across "1Vr#f ¦[

For the thermal analysis we use a quadrilateral element with four nodes to interpolate the tem!
perature _eld[

To accommodate the boundary conditions on the outlet boundary\ we consider a typical element
Vi on the outlet boundary "see Fig[ 3#[ This element|s contribution to the residual Ru is

RVi
u � gVi

E	 ="C
ðE
−E
p−E
tŁ# dVr−gVi

u½ = b¼ dVr−g1V¦
i

u½ = t¹dAr "21#

where 1V¦\ is the element face on the outlet surface[ However\ RVi
u cannot be computed directly

since the value of t¹ is not known[ The surface integral in the above residual represents the e}ect of
the internal stress acting on the boundary of the control volume due to the material particles
outside the control volume[ This e}ect can be included by adding the internal force contributions
from a _ctitious neighboring element V�i "see Fig[ 3# to element Vi i[e[ by adding the internal nodal
forces corresponding to nodes 6�\ 7� and 8� in element V�i to those corresponding to nodes 0\ 1
and 2 in element Vj[ However\ the nodal forces associated with element V�i are the same as the
nodal forces associated with Vi since the _elds are assumed to be well!developed and uniform in
the r0!direction[ Hence the e}ect of the surface integral can be included by adding the internal
nodal forces at nodes 6\ 7 and 8 to nodes 0\ 1 and 2\ respectively\ for every element Vi on the outlet
boundary[

The weak formulation leads to a system of non!linear algebraic equations which are solved with
the NewtonÐRaphson scheme[ The tangential sti}ness matrix is banded but not symmetric[

5[ Numerical results

The RF formulation developed in the previous sections is used to analyze the steady state
behavior of the laser surface treatment process shown in Fig[ 7[ An in_nitely long plate is subjected
to a laser load moving with velocity 9[994 m:s in the X0 direction[ The laser heat ~ux distribution
is modeled as a Gaussian distribution[ Convection heat transfer is imposed on both the top and
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Fig[ 4[ Laser surface treatment ] problem de_nition[

Fig[ 5[ The meshes for "a# RF analysis and "b# transient ABAQUS analysis[

bottom surfaces ^ radiation heat transfer is assumed to be signi_cant only on that portion of the
top surface which is exposed to the laser[ The material and load data are provided in Fig[ 4[

The domain for the RF analysis is 9[954 m long ^ the center of the laser is located 9[919 m from
the inlet boundary[ The discretization includes load mesh re_nement in the region adjacent to the
laser[ A convergence study is performed "see the Appendix for details# and it is found that the
39×7 mesh shown in Fig[ 5"a# is adequate[ The thermal BVP is _rst solved and the resulting
temperature _eld is used to generate the thermal loads in the mechanical BVP[ The streamline
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Fig[ 6[ Temperature plots from "a# RF analysis and "b# transient ABAQUS analysis[

Fig[ 7[ S00 plots from "a# RF analysis and "b# transient ABAQUS analysis[

Fig[ 8[ S11 plots from "a# RF analysis and "b# transient ABAQUS analysis[

upwind PetrovÐGalerkin weighing functions are used for the hyperbolic evolution equations\ with
a factor b � 0[9[ Relaxation is used for the _rst few Newton iterations and then the standard
Newton scheme is employed to obtain quadratic convergence[ The temperature\ stress\ plastic
strain and cumulative plastic strain contour plots appear in Figs 6Ð01[

For comparison purposes\ the same problem is also analyzed via a transient Lagrangian analysis
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Fig[ 09[ Ep
00 plots from "a# RF analysis and "b# transient ABAQUS analysis[

Fig[ 00[ Ep
11 plots from "a# RF analysis and "b# transient ABAQUS analysis[

Fig[ 01[ o plots from "a# RF analysis and "b# transient ABAQUS analysis[
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Table 0
Results of mesh re_nement study for the RF analysis

05×79 05×39 05×19 7×79 7×39 7×19 5×79 5×39 5×19

S00\max 190 084 067 086 083 060 073 079 053
S00\min −398 −397 −319 −397 −395 −307 −394 −391 −304
S11\max 33[0 33[4 33[4 32[4 33[2 32[8 33[5 33[1 33[6
S11\min −07[9 −06[7 −06[6 −06[3 −07[2 −06[4 −07[3 −07[4 −07[6
Temperaturemax 348 347 348 348 347 348 348 347 347
Temperaturemin 188 188 187 187 188 188 188 188 188
En

00\max "09−3# 8[57 8[40 8[28 8[61 8[38 8[34 8[56 8[30 8[31
Ep

11\max "09−2# 2[70 2[66 2[33 2[68 2[68 2[30 2[62 2[65 2[30
omax "09−2# 3[79 3[68 3[94 3[67 3[67 2[87 3[58 3[69 3[91

CPU time "s# 0571[07 714[65 328[77 338[18 107[65 009[98 186[32 044[65 60[51
Memory "MB# 44[1 16[7 03[0 04[7 6[8 3[9 8[6 3[7 1[3

Table 1
Results of mesh re_nement study for the Lagrangian analysis

05×199 05×099 05×49 7×199 7×099 7×49 5×199 5×099 5×49

S00\max 076 076 076 073 073 071 059 059 046
S00\min −282 −286 −271 −281 −283 −274 −275 −267 −274
S11\max 30[5 30[4 33[0 30[6 30[4 32[5 31[0 30[7 33[4
S11\min −06 −06[3 −07[2 −06[3 −06[6 −07[2 −06[6 −06[8 −08[8
Temperaturemax 347 347 347 347 347 347 347 347 347
Temperaturemin 187 187 187 187 187 187 187 187 187
Ep

00\max "09−3# 8[70 8[67 8[68 8[61 8[57 8[71 8[84 8[88 8[72
Ep

11\max "09−2# 2[63 2[65 2[72 2[62 2[64 2[70 2[48 2[51 2[58
omax "09−2# 3[70 3[72 3[80 3[79 3[72 3[89 3[69 3[63 3[79

CPU time "s# 7423[5 3048[3 1965[8 2857[7 0754[7 820[1 1674[8 0270[4 697[1
Memory "MB# 06[9 7[4 3[2 3[7 1[3 0[1 1[8 0[3 9[7

using ABAQUS[ The domain for the Lagrangian analysis is a length 9[049 m[ A convergence study
is performed "also discussed in the Appendix# to consider the e}ects of the mesh size and the time
step[ The results converge for the 099×7 mesh shown in Fig[ 5"b# and a time step of 9[0 s[ Both
analyses "thermal and mechanical# use eight noded elements ^ and reduced integration is used for
the mechanical analysis to eliminate locking[ The analogous results are shown in Figs 6Ð01\ and
are in good agreement with the results from the RF analysis[

The RF and Lagrangian analyses require 107[7 and 0754[7 CPU s\ respectively\ on the same
IBM 489 machine\ thus establishing the computational e.ciency of the RF method[ Another
advantage of the RF formulation is the ability to locally re_ne the mesh at critical regions "see
Fig[ 5# thereby improving the spatial resolution of the response _elds[ However the unsymmetric
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Table 2
Results of time increment re_nement study for the Lagrangian
analysis with the 7×099 mesh

Dt 9[94 9[0 9[1

S00\max 077 073 058
S00\min −283 −283 −272
S11\max 30[5 30[4 27[7
S11\min −06[6 −06[6 −05[7
Temperaturemax 347 347 347
Temperaturemin 187 187 187
Ep

00\max "09−3# 8[56 8[57 8[89
Ep

11\max "09−2# 2[66 2[64 2[56
omax "09−2# 3[73 3[72 3[70

CPU time "s# 2535[2 0754[7 0911[3

sti}ness matrix and the increased number of degrees of freedom per element "due to the state
variables#\ increases the memory requirement for the RF method[ The RF analysis requires 6[8
MB of memory to store the sti}ness matrix in unsymmetric\ banded form vs 1[3 MB required to
store the sti}ness matrix in the symmetric banded form for the Lagrangian analysis[

6[ Conclusions

A mixed Reference Frame formulation for quasi!steady thermo!elasto!plastic processes is
developed for small deformation quasi steady processes that uses displacements and history!
dependent variables as the primary variables[ This formulation is then applied to simulate a laser!
surface treatment process and the results agree with those obtained from a computationally
intensive Lagrangian analysis[

Appendix ] Mesh and time discretization studies

A convergence study is performed to analyze the e}ect of the mesh size on the RF results ^ and
the e}ect of the mesh size and the time step increment for the transient Lagrangian analysis[ The
maximum and minimum values of the axial stresses "S00 and S11#\ temperature\ and the maximum
value of the plastic strains "Ep

00\ Ep
11 and o# are monitored to determine when convergence is

achieved[ The results of the study are shown in Tables 0Ð2[ It was concluded that the results
converge to a su.cient degree with 7×39 mesh for the RF analysis ^ and with a 7×099 mesh with
a time step Dt � 9[0 s[
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